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AI) STRACT

Hrnploying  a recently proposed “multi-wave intcrac(ion”  theory [J1~M, 243, 623-625],

spectm of capillary-gravity waves are derived, I’his case is characterized by a rather }Iigh

dcgrw  of nonlinearity and a complicated dispersion law. The rcsu]tant  absmcc  of scale

invariance makes this and some other problems of wave turbulence (c,g., nonlinear Rossby

waves) intractab]c by small-perturbation techniques, even in the weak-turbulence limit.

The analytical solution obtained in the present work is shown to be in good agreement with

experimental data, Its low- and high-frequency limits yield power-laws characterizing

spcctm  of purely gravity and capillary waves, mpectivcly.  in the limits of weak and

strong nordincarity,  these miuce  to the Zakharov-Filonenko  and Phillips spectra,

mpectivel  y.
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‘1’hc subject of this paper  is mrbulcncc  of surfidce  gravity-capillary waves, although the

formalism can be applied to other problems of ncmlincar wave dynamics, such as internal

waves, Rossby  waves, acoustic turbulence, etc. The weak turbulence theory (W’l-l’)

presently available for these problems [Zakharov,  L’vov and Falkovich, 1992] proved

successful in many cases. However, some of ils constraints greatly limit its scope. Duc to

formidable mathematical difficulties, W]”J’ cannot account for higher-order nonlinear

effects. Besides, WTI’ ~quims  scale invariance (as yielded by a power-law type of

dispersion law) and Idealization of external sources and sinks - m yield practical results

even for weakly nonlinear problems. Therefore, some intuitive and ICSS  formal approaches

may prove more useful in many cases. An example is given by l%illips [ 1985] where

weak turbulence of surface gravity waves is considered with the source functions

continuously distributed in the wavcnumber  space. A similar approach, but going beyond

the weak turbulence limit (and called the “multiwavc interaction theory,” or MIT for short)

was suggested recently lGlaznlan,  1992] to explain observed variations in the exponent for

power law spectra of surface gravity waves. ‘1’hc Kolmogorov  assumption of locality of

nonlinear wave-wave interactions is crucial in these theories. Provided this assumption

remains approximately valid for an increased number of the resonantly Fourier

components, MIT could in principle be applied to a broad class of problems. Indeed, it

does not require the lowest dcgre~ of nonlinearity, simple dispersion laws or simple

expressions for the wave energy density, and it can be used for weakly nonconservative

syskxns  - as demonwrated  earlier. I lowcver,  due to its heuristic nature, MIT requires

thorough experimental verification.

l’hc case of capillary-gravity waves is characterized by a highly complex expression for

the potential energy,

u== +pg~ l~2iix  4- OpJ({l+lv?]l’  – I) fix (1.1)

where q=q(x,r)  is the elevation of the fluid surface above the zero-mean level,  g is the

acceleration of gravity, and o is the coefficient of surface tension, 7’, divided by fluid

density p . The dispersion law is

(d2 =gk+crk3  , (1.2)

which, while permitting three-wave resonant interactions, eliminates scale-invarifincc

(actually, self-affinity) of the wave field. Characteristic wavelengths at which (1. 1 ) and



(1 .2) arc relevant extend from tenths ai~d tip to tenor more centiincters  - the waves

anmi~abl ctoaccurat  elaborator yinvcstigation. Thus, uidikeo[hc  rexainplesof  wave

turbulence, the capillary -gmvity waves are highly intcrcstii~g  as a tcs{ case. Besides, these

waves are primarily msponsiblc  for radar backscattcr  by the ocean surface, aild thus am of

great practical interest.

In section 2, the thcxxetical  approach is briefly reviewed cmphasizii~g a few iinportant

points that escaped the author’s attention in the earlier paper [Glazman,  1992]. Spectra of

capillary-gravity waves am derived in scxtion 3, and experiinental  coinparison  is presented

ii) section 4.

L Mulfwave
.

-intcrw tion Ihcorv  for  Surface cr~illarv waves

1,et us consider a conservative spectra] flLix of wave cimrgy. The external energy

solircc acts at lower frequencies - outside our iiwtial  subrange.  “J’hereforc,  a specific

mechanisin of wave gcneratioi~  is not addressed here. The rate Q of energy iiqmt,  asstimcd

to be known, equals the rate of energy transfer down the spcctruim.  1 ~ollowiilg the earlier

reasoniilg  [Glazman,  1992], Q is related to the characteristic t iinc of nonlinear wave-wave

interaction (the “turnover tiine”), tn, and the characteristic energy fin transferred from a

cascade step n to step (n+ 1) by
pQ=En/tn (2.1)

where the water density p appears bccatise Q is taken per ui]it mass of water. Provklcd

E)l and t,, can be expressed ii~ terms of k, CD and wave aillp]itude  a, equation (2. 1 )

allows one to derive the spcctruin  by mcai~s  of clement ary algebra (e.g., [ FrLsich  et al.,

1978]). Let us express these parainetcrs  in terms of the relcvailt  qliai]titics.

An approximate eqlii-parthion  of emcrgy  between the kinetic and the potential parts

allows one to write the surface density of the total wave cim-gy, E, as

E = p[g(?]y  Cr((v?))q] (2.2)

where the ai~gular  brackets denote ensemble average. To pass froim (1.1) to (2.2) wc

(assuined (V?I)2) <<1 which is reasonably well justified  for natural seas (e.g., [Cox and

Munk, 1954]). Validity of this assuinption  for a laboratory cnviroilinent  will be disclisscd

ii) section 4. V’he energy E is related to the spectral dcilsity of the wave energy by:
Ii= Js(~)da) = Jjfi(k, tl)kd(lik , (2.3)

where the integratioi~  is carried out over all wavcnLiinbers/frequencies. 1 Icre, S(co) is the

frequency spectrlirn and F’(k, 0) is t}~c two-diinei~sioi~al  wavciluinber  spectrum of the

wave energy.
The ainouilt  of energy, En, tmi~sferrtd by the cascade nmchai]im  is estimated as:



fin = ~klm) (2.4)
(.”

where (con, an+ 1 ) is the width of a cascade step (which must be much smaller than the

width of the inertial range), and the ratio r- = (on+ 1 / (o,, is constant and sufficiently greater

than unity - as required by the assumption of locality of wave-wave interactions in the
frequency space. lndccd, differentiating (2,4) over W. yields

–(W. / dcon = S(on)  – rs(mn)  = S(an)[l -“ r’ ‘-p] , whcm the latter equality is valid for

wave spectra of type S(to) M CO
-p. Therefore, provided the spectrum rolls off sufficicntl  y

l-P c< 1), we have:fast (i.e., r

S(6)) = -dE(o)  / (im (2.5)

Although the spectrum being derived here has a more complicated shape than that given

by W-p, the above approximation can be easily checked a po.wcriori.  lirom (2.2) it is

obvious that 1711  for gravity-capillary waves can be written as

En= p[ga: + cr(ankn)21 (2.6)

1 lcrc, att is the Fourier amplitude of surface oscillation at the frequency/wavcnun~bcr

scales @,l and krl , corresponding to the n -t}] step in the spectral cascade.

‘1’hc derivation of the turnover time is formally based on the scaling of the collision

integral in the kinct ic cquat  ion [Zakharov and 1 ~vov,  1975; Larraza et al, 1990] for the

wave action spectral transfer. It is also useful to introduce this timcscale in a mom

gcncrtd,  although lCSS formal fashion. ‘1’o this cnd we notice that the nonlinearity of wave

processes is measured by the ratio, G of the fluid part,icle  velocity, u, to the wave phase

velocity, Wk [ Witham, 1974]. Since fluid par[iclcs in a surface wave cxccutc an

approximately orbital motion in the vertical plane with the radius equal to the wave

amp]itudc  and the period 2ti[o, the value of u at a given scale is estimated as all[o,l.

Respectively, the ratio ul(c/co) is

(2.7)

This quantity represents the small parameter in deterministic perturbation theories.
1 lowcvcr, since the kinetic equation for the wave, action, N(k) =F’(k)/o, (or wave energy,

l’(k) ) spectral transfer is derived for secorrd statistical moments of the fields, the equations

of statistical theory are developed in powers of 82. Terms (i.e., collision integrals) of order

C2 correspond to three-wave interactions, while each additional I ~ouricr  component

accounted for in the interaction integral adds ncw tcrrns  which arc # times as great as a

preceding term. “l’he v-th term is of order Z2(V-2). Rcspectivcly,  the char.actcristic  time of

nonlinear wave-wave interactions incrcascs as the number of interacting harmonics grows.
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I/or 3-wave interactions, this time is given by 1-1 = COC2, and for an arbitrary number, v,

we have [Ixirraza cl al., 1990]:

t -1 $= (0s2(”-2) (2.8)

l~omally,  the kinetic equation is written as
~N / dt + V~ s T(k) = p(k) , (2.9)

where p(k) is the spectral density of the input flux of wave action (from wind), and
Vi ● 7’(k) denotes the spectral density of the action flux due to all wave-wave interactions

to order v:
V1 ● 7’(k)= 13 -F 14+-...+lv (2.10)

IV are collision integrals accounting for interactions anmng v waves satisfying resonance

(2.11)

(non-resonant terms can bc eliminated by appropriate canonical transformations [Yakharcw

ct al., 1992]). For gravity waves, the minimum number of resonantly interacting

components is 4, while for capillary waves it is 3.

It has been argued earlier [Glazman,  1992] that intermittently occurring, rare events of

steep and breaking waves (characterized by a locally high nonlinearity, hence a large, or

even infinite, number of interacting ];ourier  components forming individual highly non-

linear wavelcts), result in an increased mean (over a large time interval and large surface

area) value of V. While this v may be substantially greater than the minimum resonant

number appearing in WI”]’, the energy and action transfer may still be dominated by the

weakly nonlinear  inertial cascade. Thus, the “cffcctivc”  v is introduced as an unknown

function of the problem, the assumption of locality of wave-wave interactions in the

wavcnumber space remaining in force, 1.ct  us notice that the turnover time given by (2.8)

for the highest-order term in (2,10) is the slowest of all the times for “partial” fluxes in
(2.10). Therefore, although the total flLIx of the wave action, V,. 7’(k), is comprised of

many partial flLIxcs 13, 14, etc., the appropriate characteristic time scale for the integral

transfer is given by (2.8),

We consider the case when the external input is concentrated at wavcnumbcrs  below

certain kO marking the high-wavcnumbcr  boundary of the “generation range. ” ‘1’hcrcforc,

atk>~: p(k) = O, and the spectral flux is purely inertial. II is given by
ho

P~ = j @k)kdk jp(k, O)L!O (2.12)
o -%

Respectively, equation (2.9) for the inertial range yields

En[on(a,ikn  )2(V-2) = /3Q (== COns[) (2. 13)
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where n>] .
Using (1 .2) and (2.6), cqua(icm  (2.13) results in

fin ~ @V(v-l)o(v’”2)/(v-l)  (D- ll(v-”’)q)v((~,,).
n (2.14)

where @v(%)
‘[’%$W-2)’(V-’])

A4(m) = [k((o)/ l’+ (2.15)

and 1 / A-= (0/g)l’2 gives the characteristic lengthscalc  of the problem (where the phase

speed is at minin}um)  The explicit dcpcndcnce  of k on co , as follows from (1 .2), is

k((.) == u, ((n) +“ U2(0)) , (2.16)

Based on (2.14) and (2.5), the energy spectrum is found as

4)

Q I/(v-l) ~,v(a)

- [

4(v--2) 1S((d) = ap ; —VT.  1 - t——-–– .  (o”v/(v-l)
1+- w(a))

(2.17)

(2.18)

where (x is a (“Kolnlogorov”)  constant of proportionality. “l’he short-wave limit of

(2. 18) is obtained by setting M(a) -+ M , hence d~v(to)  + 1. In a special case of v=3,

this yields  the 7~kharov-Filoncnko  spectrum ~7akharov  and l~iloncnko,  1967] of weakly

nonlinear capillary waves. It is also easy to check that for v=4, the long-wave limit of

(2. 18) yields the 7“kharov-Filoncnko  spcctrurn  [7akharov and I’iloncnko,  1966] of gravity

waves.

3. Wave spectra

Relationships between the energy spectrum (2. 18) and the spectra of surface height and

surface .gradicnt  (i.e., wave slope) arc more complicated than those for pm-cl y gravity and

Illrmly capillary  waves.  Specifically,  as fO]]OWS frOTll (2.2), [he SpCC[rLlll) Of SUrfaCC hCight

variation is related to (2.18) by

(3.1)

It is easy to verify that (3.1) reduces to the well-known Yakharov-lziloncnko  and Phillips

spectra when the appropriate limits arc t akcn, in the wavcnumbcr domain, the two-

dimensional spectrum of surface height variation (omitting the angular spread factor,

Y’(O, k)) is found as:

(3.2)

JJor simplicity, wc assume the following normalization condition for Y’(O, k) :



;Y’(O,k)dO  = 1 (3.3)
-Z

‘1’hc two-dimensional spectrum of the wave slope modulus (again, the angular spread factor

Y’(O, k) is omitted) is found as

-id!:<~!:)s(~(k))
%q(k)  = k2F,Jk)  = --—2pg[l -t M(k)]

(3.4)

It is useful to present these results in a nondimensional form by scaling all variables as

follows:

k  = K~, U= fl~, ~== –-~--q,  i(fl) = ~;~- ,
(~/ h )

*’2  III terms of K and L? , the dispersion lawwhere ~ = (g3 / 0)1’4 and K = (g/ a) .

(3.5)

(1 .2) takes the foml

Q2=K-t  K3 (3.6)

‘l’he non-di;hensional  spectrum of wave energy becomes:

[ 1
S(Q)  = ~w-”1) Q’V(Q) , ~ 4(V–  2) Q-. v/(v..])

v–1 1 -t 3K@)
(3.7)

and the non-dimensional spectrum of wave slope is:
{~(1 +3K2)  -

23,2  L’$’(fXK))~Vn(K)  = 2(] -+ K )——— (3.8)

K 2

where &n (K)= -&vn(k)

4 Conlb with Iabordfwv o JSWtt ions

‘J’o compare these results with the laboratory measurements by Jiihnc  and Riemcr

[1990] (conducted in a large wave tank -100 m length),  wc need the “saturation function”
B(k) = k2Fvq (k). An example of the J&R measurements is reproduced in Fig. 1. in the,

non-dimensional form, this is };(K)  = K21~vq(K)  where ~l(K) = B(k) / cz. The values of

~ can be expressed via external parameters. Specifically, the energy flux is given by

Q= (P. /Pw)c#3 (4.1)

where the density ratio is of order 10-s and the integral tmnsfcr coefficient of the wave

energy, Cq, is somewhere between 0.02 and 0.05 [Phillips, 1985; Glazman, 1993]. l~or

the range of wind speed values tested in the J&R experiment, the l~on-dirl~c)~sior)al  energy

flux varies between 0.5 and 30.

In principle, v can be related to the energy flux Q and the magnitude of the wave

spectrum l’(~) at the low-frequency boundary k~ of the given inerii al subrangc

[Glazman, 1992], which wou]d require matc}~ing  (2.18) to a known spectrum of gmvity



waves. in other words, a “rigorous” determination of v require.s consideration of the

whole wave-generation problem - a grand task that would take us WC]] beyond the scope of

Ihc present work. Besides, a rigorous determination of v might actually bc irrelevant with

respect to a wave tank situation. indeed, laboratory experiments grcady  limit the wave agc

by inhibiting the dcvcloprncnt  of the inertial cascade in the gravity range and thus creating

in that range a highly artificial physical situation, ‘1’hcrcfore,  wc shall pick several values of

v and ~ which appear reasonable. In particular, v should be an increasing function of

wind (hence, of Q), Moreover, this function must display a saturation effect, i,c,, its

growth with an increasing ~ should slow down at high values of the latter.

According to (4.1) and Fig. 1, values ~ = 0.5, 1.0, 5,0 and 20 arc in the range of

wind speeds tested by J&R . The theoretical predictions of fi(K) are illustrated in Fig, 2.

Evidcnt]y,  our curves arc in rcasonab]c  agreement with the mcasurcmcnts.  “l’he comparison

also yields an estimate of the Kolmogorov  constant: ct=O.01. “1’hc set of v selected in IJig.

2 can be plotkxi  against Q, Fig. 3, or against wind speed, l~ig.  4- using (4.1). It is also

uscfu] to derive an empirical fit based on liig. 4. The result is:

()V=lo 1–+ (4.2)

where U is in ntisee.

The main quantitative discrepancy between the themctical]y  prcdic(cd  spectrum and the

measured spectrum is that the measured spectrum starts falling off at wavenumbcrs  roughly

twice those predicted in Fig. 2. This mig}~t  bc attributed in part to the fact that the surfiacc

tension coefficient charactcriz,ing a wave tank situation can hardly be as high as that for

pure water (70 dyn/cm). If wc reduce o by half, the quantitative agreement with the

measured data will bc much better. 1 Iowcvcr,  a more important reason for the

disagreement is that we have used an assumption of a small wave slope to derive (2.2)

from (1. 1), This assumption is likely to be violated in a wave tank experiment, and

higher-order terms in the expansion of the square root in (1. 1) may have to be taken into

account. In principle, the present heuristic approach makes such a refinement possible.

J lowcvcr, with respect to sea waves, it is hardly justified.
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